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[1] Determining the bulk composition of island arc lower
crust is essential for distinguishing between competing
models for arc magmatism and assessing the stability of
arc lower crust. We present new constraints on the
composition of high P-wave velocity (VP= 7.3–7.6 km/s)
lower crust of the Aleutian arc from best-fitting average
lower crustal VP/VS ratio using sparse converted S-waves
from an along-arc refraction profile. We find a low VP/VS

of ~1.7–1.75. Using petrologic modeling, we show that no
single composition is likely to explain the combination of
high VP and low VP/VS. Our preferred explanation is a
combination of clinopyroxenite (~50–70%) and alpha-
quartz bearing gabbros (~30–50%). This is consistent with
Aleutian xenoliths and lower crustal rocks in obducted
arcs, and implies that ~30–40% of the full Aleutian crust
comprises ultramafic cumulates. These results also suggest
that small amounts of quartz can exert a strong influence
on VP/VS in arc crust. Citation: Shillington, D. J., H. J. A.
Van Avendonk, M. D. Behn, P. B. Kelemen, and O. Jagoutz
(2013), Constraints on the composition of the Aleutian arc lower
crust from VP/VS, Geophys. Res. Lett., 40, 2579–2584,
doi:10.1002/grl.50375.

1. Introduction

[2] Competing models for arc magmatism make different
predictions for the thickness and composition of arc lower
crust [e.g., DeBari and Sleep, 1991]. Information on the
composition of arc lower crust is also needed to estimate
its long-term stability [Jull and Kelemen, 2001; Behn and
Kelemen, 2006]. To reconcile the average “andesitic”
composition of continental crust with primitive island arc
compositions, many models call for foundering of dense
mafic-ultramafic cumulates into the underlying mantle [e.g.,
Arndt and Goldstein, 1989; Kay and Kay, 1993].
[3] However, constraining the composition of the island

arc lower crust and distinguishing high-velocity lower crust
from upper mantle rocks is difficult because (1) lower crustal
arc sections are poorly represented in obducted sections
[Kelemen et al., 2003a and references therein]; (2) the

primary constraints on the lower crust and upper mantle in
many active arcs are xenoliths and P-wave velocities (VP).
It is unclear how representative the former may be, and the
latter cannot uniquely distinguish between the effects of
composition, temperature and melt. For example, VP of 7.x
km/s beneath the Izu-Bonin-Marianas arc are interpreted to
represent hot mantle, possibly with melt [Suyehiro et al.,
1996] or ultramafic cumulates [Kodaira et al., 2007]. Even
in the absence of elevated temperatures and/or melt, VP

cannot be used to differentiate between different possible
lower crustal compositions [e.g., between garnet bearing
and plagioclase-free compositions, Behn and Kelemen,
2003; Müntener and Ulmer, 2006] and/or serpentinized
peridotite [e.g., Lizarralde et al., 2002].
[4] Ambiguity in constraining the composition of the deep

parts of island arcs with seismic velocities can be reduced by
incorporating information on S-wave velocity (VS) and VP/VS

ratios [e.g., Christensen, 1996]. Here, we combine an analysis
of sparse S-wave data from the central Aleutian arc and petro-
logic modeling to better constrain the composition of the
lower crust.

1.1. Existing Constraints on Compositions in the
Central Aleutian Arc

[5] Aleutian volcanic rocks exhibit a spectrum of compo-
sitions (high-Al basalts, high-Mg basalts, and andesites) and
fractionation trends (calc-alkaline and tholeiitic); this
compositional diversity has been attributed to variations in
fractionation depth, state of stress in the overriding plate,
differences in parental magma compositions, and water
content [Kay et al., 1982; Myers, 1988; Singer and Myers,
1990;Miller et al., 1992; Sisson and Grove, 1993a; Kelemen
et al., 2003b; Zimmer et al., 2010]. These models make
different predictions for lower crustal composition. For
example, one explanation for the abundance of high-Al basalts
is the crystallization of a thick sequence of pyroxenite at
depth (possibly due to the presence of water), which would
enrich the remaining liquid in Al [Sisson and Grove, 1993a].
The mineral assemblages of lower crustal rocks may also
be modified following crystallization by metamorphism,
particularly the formation of garnet [Behn and Kelemen,
2006]. The only direct information on the Aleutian lower
crust comes from limited xenoliths, many of which are
(olivine-) clinopyroxenites [Conrad et al., 1983; DeBari
et al., 1987; Yogodzinski and Kelemen, 2007], but it is not
clear how representative these are.
[6] Existing active-source seismic data from the Central

Aleutians acquired in 1994 with the R/V Maurice Ewing
and onshore/offshore seismometers (Figure 1) indicate
relatively high VP in the lower crust of the Aleutian arc
[Holbrook et al., 1999; Lizarralde et al., 2002; Shillington
et al., 2004; Van Avendonk et al., 2004]. For the lower crust
of the oceanic island arc, these range from ~7.0–7.1 km/s
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directly beneath the active arc [Holbrook et al., 1999] to
7.3–7.6 km/s slightly trenchward [Shillington et al., 2004].
There is a sharp step in velocity at the top of the lower crust
(~0.4 km/s), and along-arc variations in lower crustal
velocity appear to correlate to variations in lava composition
[Shillington et al., 2004]. These characteristics were
attributed to mafic/ultramafic cumulates and/or garnet
granulites in the lower crust [Shillington et al., 2004], but
VP alone cannot distinguish between different possible lower
crustal compositions and other explanations, such as partial
melt in the subarc mantle or serpentinized mantle in the
forearc mantle wedge.

1.2. Analysis of S-wave Arrivals

[7] To constrain the VP/VS ratio of the deep Aleutian arc
crust, we performed a very simple analysis of sparse
converted S-wave arrival times from the arc-parallel wide-
angle seismic profile acquired in 1994. Seismometers on
the Aleutian Islands recorded shots from the 8000 in3 airgun
array of the R/VMaurice Ewing, which steamed south of the
islands (Figure 1). Thus, the majority of P- and S-wave ray
paths in this experiment sampled the arc crust trenchward
of the active arc, but were still within the arc platform
[Shillington et al., 2004; Van Avendonk et al., 2004].
[8] We focus our analysis on arrivals from four stations

where converted S-wave reflections and refractions were
observed at large enough shot-receiver offsets to sample
much of the crust (Figure 1). Arrivals occur over source-
receiver offsets of 20–180 km and have apparent velocities
from ~3 to 4.2 km/s (Figure 2). Consistent with the observa-
tion of distinct P-wave reflections and refractions from three
laterally continuous layers, we identify three crustal S-wave
refractions with distinct apparent velocities; intracrustal and
Moho S-wave reflections are also observed (Figure 2 and
auxiliary material). Upper crustal arrivals have compara-
tively 3-D paths due to the experiment geometry, but the
longer ray paths of lower crustal refractions and Moho
reflections approximately fall in the 2-D plane along the
arc platform (Figure 1). Our analysis included 2306 picks;
they have large uncertainties (~150–500 ms) because they

occur in the coda of the P-wave arrivals. Raytracing tests
suggest that P-to-S conversions occurred at the seafloor or
at the top of basement beneath a thin veneer of sediments.
[9] S-wave arrivals were previously identified in this data

set by Fliedner and Klemperer [1999], who used travel
times in independent 3-D P- and S-wave tomographic
inversions. We argue that the paucity of S-wave observa-
tions and large uncertainties in travel time picks favor an
alternate, simpler analysis approach. We searched for the
best-fitting, constant VP/VS ratio for each layer. An S-wave
model was calculated from the P-wave model for each of a
range of VP/VS ratios. We traced rays through each model
in 3-D to produce predicted arrivals times for reflections
and refractions, which were used to calculate a RMS misfit.
Starting with the upper crust and working down, we found
the best-fitting constant VP/VS ratio for each layer. A fixed
delay of 1.8 s was used to account for structure beneath
the stations; a similar approach was used for the P-wave
modeling [Van Avendonk et al., 2004].

1.3. Results of S-wave Modeling

[10] This approach yielded ranges of best-fitting constant
VP/VS for the upper, middle and lower crust along the central
Aleutian island arc. Here we focus on results for the lower
crust. The RMS misfit curve for S-wave refractions within
the lower crust and reflections off the base of the lower crust
(i.e., the Moho) shows a clear minimum at a VP/VS of 1.70
(Figure 3). Given the large uncertainties associated with
travel time picks of these sparse data and the simple
approach taken here, models with VP/VS between ~1.65
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Figure 1. Map with 1994 Aleutian experiment. Bold
orange line shows shotline used in this study. Instruments
shown with white circles; instruments whose data are used
here shown with orange circles and text. Red triangles
indicate volcanoes from the Smithsonian Global Volcanism
Program. Plate boundary and convergence directions and
rates with respect to North American shown with yellow
dotted lines, arrows and text [DeMets et al., 2010].
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Figure 2. Data from Nikolski2 (location in Figure 1).
(a) P-wave arrivals in section reduced at 7 km/s. (b)
Converted S-wave arrivals in same data reduced at 4 km/s.
Refractions from upper (blue), middle (green), lower crust
(red), and upper mantle (turquoise). Reflections from base
of upper (orange), middle (yellow), and lower crust (purple).
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and 1.75 are considered acceptable. However, the apparent
velocities of the refractions, alone, indicate a higher VP/VS

(~1.75). Additionally, the average lower crustal VP/VS based
on regional earthquakes indicates a VP/VS of ~1.74–1.77
[Abers, 1994], and higher lower crustal VP/VS are implied
in the lower crust directly beneath the active arc by receiver
functions at stations along the arc (H. A. Janiszewski et al.,
2013, submitted). Thus, we favor the upper end of our
acceptable range (1.7–1.75).

1.4. Interpretation of VP/VS

[11] The new VP/VS results presented here combined with
the VP model along the same profile [Shillington et al., 2004;
Van Avendonk et al., 2004] provide unique new constraints
on island arc lower crust. Below we discuss different
possible explanations for our observations.
[12] Although the range of permissible average VP/VS

ratios from our study is large, it immediately excludes many
possible explanations for 7.x km/s P-wave velocities in the
lower crust and/or upper mantle. If P-wave velocities of
7.3–7.6 km/s were caused by serpentinization of the mantle
wedge approaching the forearc, we would expect relatively
high VP/VS [e.g., Christensen, 2004, Figure 4]. Likewise,
high temperatures and the presence of melt would also
increase VP/VS [e.g., Faul and Jackson, 2005]. Anisotropy
can also influence the estimation of VP/VS [Hacker and
Abers, 2012]. However, for the ray paths in this study and
possible mineral assemblages in the lower crust, we infer
that anisotropy is unlikely to completely account for the
observed low VP/VS.
[13] In general, the dominant compositional control on VP/VS

variations in the crust is silica content; higher silica rocks are
generally associated with lower VP/VS [Christensen, 1996,
Figure 4]. However, in mafic and ultramafic rocks with low
SiO2, other minerals begin to play a role in controlling the
velocity characteristics. There are several possible constituent
minerals that could be present in the Aleutian lower crust that
would result in a relatively low VP/VS (<1.75).
[14] Pyroxenite can have VP/VS ranging from ~1.68 to

1.85 (Figure 4), depending on the composition of the
pyroxenite (orthopyroxene has a lower VP/VS than
clinopyroxene) [Behn and Kelemen, 2006]. Many xenoliths
from the Aleutians are (olivine-) clinopyroxenites [Conrad

et al., 1983; Conrad and Kay, 1984; DeBari et al., 1987;
Yogodzinski and Kelemen, 2007]. The estimated VP of these
compositions based on Hacker and Abers [2004] (~7.5–7.8
km/s) is at the upper end of the VP range for the lower crust
from Shillington et al. [2004] (7.3–7.6 km/s), but the VP/VS

ratio (~1.77–1.79) is higher than the values presented here
(Figure 4). Thus, another composition must be present in
addition to (or instead of) clinopyroxenite.
[15] Orthopyroxene has a lower VP/VS ratio and could be

present due to the breakdown of olivine plus plagioclase to
form clinopyroxene, orthopyroxene, and spinel [Kushiro
and Yoder, 1966]. Alternatively, metasomatism of olivine-
rich rocks by silicious fluids can form orthopyroxene at
temperatures above serpentinite stability but below the
solidus (~700–1000�C) [Wagner et al., 2008]. Orthopyroxenite
could fit our observed VP and VP/VS (Figure 4); however,
orthopyroxene is not observed in any of the lower crustal or
upper mantle xenoliths from the Aleutians [Conrad et al.,
1983; DeBari et al., 1987]. Therefore, although orthopyroxene
may be present, we find it unlikely that it forms in sufficient
abundances to explain the observed VP/VS ratios.
[16] Another possible contribution to low VP/VS is the

presence of quartz. Quartz is common in felsic and interme-
diate arc rocks. Its presence in more mafic rocks could occur
due to fluxing of silicious material from the slab [Rossi et al.,
2006]. Alternatively, the metamorphic reaction of enstatite
and plagioclase forms garnet, clinopyroxene and quartz
[Kushiro and Yoder, 1966]. The abundance of quartz in
the deep Aleutian crust is unknown; Conrad et al. [1983]
reported that a gabbroic xenolith from Adak contains quartz.
It is also observed in deep crustal rocks from the obducted
Kohistan arc [Yamamoto, 1993; Jagoutz and Schmidt,
2012], but is not observed in lower crustal gabbronorites in
the Talkeetna section [Kelemen et al., 2003a; Behn and
Kelemen, 2006]. The elastic properties of quartz change dra-
matically with the transition from alpha to beta quartz; alpha
quartz has a much lower VP/VS (~1.4) than beta quartz (~1.7)
[e.g., Ohno et al., 2006]. The profound effect of the alpha-
beta quartz transition is illustrated in Figure 4, which shows
VP and VP/VS calculated using Perple_X [Connolly, 2005]
for rocks from obducted arc sections in Talkeetna and
Kohistan at 0.8 GPa (see auxiliary material). Calculations
at 750�C lie within the alpha quartz stability field, and rocks
with higher SiO2 trend toward low VP and low VP/VS ratios
(Figure 4a). By contrast, velocities calculated at 900�C
lie within the beta quartz stability field, and rocks with
higher SiO2 trend toward low VP and high VP/VS

(Figure 4b). Our rays sample the lower crust trenchward of
the active arc line, where colder temperatures are expected,
making the stability of alpha quartz more plausible [Shen
et al., 1993].
[17] The sensitivity of the expected mineral assemblages

arising from different bulk compositions as a function of
temperature and pressure was assessed by examining several
possible lower crustal compositions derived from obducted
arc sections using Perple_X (see auxiliary material). To
satisfy the high VP in the Aleutian lower crust, the presence
of quartz, which has low VP, would need to be balanced
by other components with higher VP, such as garnet. The
pressure-temperature window in which both phases are
stable is either nonexistent or very narrow and confined to
conditions only present in the lowermost Aleutian crust
(Figure S7). Consequently, we conclude that alpha quartz
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Figure 3. RMS residuals for various lower crustal VP/VS

for S-arrivals on instruments shown in Figure 1.
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could contribute to the observed velocity properties of some
parts of the crust, but cannot be the sole explanation for the
low VP/VS ratios over the entire Aleutian lower crust.
[18] Based on the factors discussed above, it does not

appear that a single composition can fully explain the VP

and VP/VS of the Aleutian lower crust, but rather a combina-
tion of rock types is required. We favor the interpretation
that there is abundant (olivine-) clinopyroxenite in the
Aleutian lower crust, consistent with Aleutian xenoliths.
These compositions have VP that fall within the upper end
of the range of VP observed in the lower crust here, but their
estimated VP/VS ratios are above the observed range
(Figure 4). This requires that other compositions with lower
VP and VP/VS must also be present to account for the
combination of high VP and low VP/VS. Specifically, we
favor mixtures that include compositions with a small amount
(<5 wt %) of alpha quartz, such as rocks with ~50–65 wt %
SiO2 (Figure 4). Mixtures with ~30–50% alpha-quartz bearing
gabbro (VP = 7.1 km/s and VP/VS=1.72) and ~50–70%
clinopyroxenite (VP=7.6 km/s and VP/VS=1.775) could
account for our observations.

2. Discussion

[19] We analyzed S-wave arrivals to better constrain the
composition of the deep part of the Aleutian arc, which
includes a thick layer with VP of 7.3–7.6 km/s [Shillington
et al., 2004]. We find relatively low VP/VS values of ~1.7–1.75
for this layer, which is consistent with abundant clinopyroxenite
(as indicated by Aleutian xenoliths) in addition to another
composition with lower VP and lower VP/VS ratios. We fa-
vor gabbro or another evolved composition with small

amounts (<5%) of alpha quartz. The pressures and
temperatures expected across the arc crustal section from
the active arc toward the trench span the alpha-beta quartz
boundary, such that even small amounts of quartz could
result in large changes in VP/VS in the middle and lower
crust across island arcs.
[20] We use lower crustal VP and VP/VS to estimate that

~50–70% of the lower crust is composed of clinopyroxenite,
implying that it forms ~30–40% of the entire Aleutian
crustal section. The portion of the Aleutian crust comprising
ultramafic cumulates is larger than the proportion of
equivalent compositions exposed in obducted arcs, but
similar to estimates of their proportions based on
geobarometry and mass balances [Kay and Kay, 1985;
DeBari and Sleep, 1991; Greene et al., 2006; Jagoutz and
Schmidt, 2012]. In contrast to what is interpreted for many
other island arcs, we interpret the presence of significant
ultramafic cumulates above the seismic Moho, and that our
Moho represents the contact between mafic-ultramafic
cumulates and mantle. In many arcs, these compositions
are inferred to lie beneath the seismic Moho; their high
velocities might make them indistinguishable from hot upper
mantle, such that the Moho might instead represent a
boundary between plagioclase-bearing and ultramafic
compositions [Müntener and Ulmer, 2006; Kodaira et al.,
2007; Tatsumi et al., 2008].
[21] The presence of abundant clinopyroxenite in the

Aleutian lower crust can explain several key characteristics
of Aleutian lavas. The crystallization of a thick layer of
pyroxenite will result in a higher-Al liquid and could
account for high-Al basalts in the Aleutians [Sisson and
Grove, 1993a; Müntener et al., 2001]. Likewise, the
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Figure 4. Seismic velocities of obducted arc rocks from Talkeetna and Kohistan [Kelemen et al., 2003a; Jagoutz et al.,
2006]. Phase proportions and velocities were calculated from bulk composition with a version of Perple_X modified to
include the alpha/beta quartz transition at (a) 750�C and (b) 900�C, which lie in the alpha and beta quartz stability fields,
respectively. Squares are ultramafic rocks, and circles are gabbros. We assume gabbros contain 0.5 wt % H2O and ultramafic
rocks are dry. Grey, black, and white triangles are velocities estimated for (olivine-) pyroxenites, dunites, and other compo-
sitions (amphibolites and hornblendites) from Aleutian xenoliths, respectively [DeBari et al., 1987] using Hacker and Abers
[2004]. Grey bands show range of VP from Shillington et al. [2004] and VP/VS from this study. Lines and text indicate VP

and VP/VS for compositional end-members of olivine (FO-fosterite, FA-fayalite), clinopyroxene (DI-diopside, HED-
hedenbergite), and orthopyroxene (EN-enstatite, FS-ferrosillite) from Hacker and Abers [2004]. Serpentinite calculated
at 600�C. Almost no compositions fall within observed VP and VP/VS ranges for the Aleutian lower crust, suggesting that
a mixture of compositions is required.
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depletion of the remaining melt in Fe could explain calc-
alkaline fractionation trends [Sisson and Grove, 1993b;
Zimmer et al., 2010]. The presence of water in the parental
magma suppresses plagioclase, which can enable the
crystallization of thick sections of pyroxenite and a more
abrupt “plag-in” [Müntener et al., 2001]. Approximately
3–4 wt % H2O is estimated for lavas in the oceanic Aleutian
arc from melt inclusions [Zimmer et al., 2010]. Simple
petrological modeling suggests that the suppression of
plagioclase crystallization due to the presence of water may par-
tially account for the sharp step in VP at the top of the lower
crust in the Aleutians (Figure S8). However, our interpretation
of multiple compositions in the lower crust implies that
magmas undergo varied crystallization sequences during their
ascent, whichmay also help explain the compositional diversity
observed at volcanoes.

3. Conclusions

[22] The analysis of sparse converted S-waves in an along-
arc refraction profile in the Aleutian island arc yields low
average VP/VS ratios for the lower crust. The combination
of high VP and low VP/VS is best explained by a combination
of abundant clinopyroxenite and another mafic composition
containing alpha quartz. This interpretation is consistent
with Aleutian xenoliths, obducted arc sections, and many
petrological models for Aleutian magmas. Better constraints
on S-wave velocity in the Aleutians and other arcs can
greatly improve our knowledge of arc crustal composition.
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